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Abstract. The diagonalization of the uncertainty matrix and the minimization of Robertson
inequality for n observables are considered. It is proved that for ewethis relation is
minimized in states which are eigenstatea (2 independent complex linear combinations of the
observables. In the case of canonical observables, this eigenvalue condition is also necessary.
Such minimizing states are called Robertson intelligent states (RIS). The group-related coherent
states (CS) with maximal symmetry (for semisimple Lie groups) are a particular case of RIS for
the quadratures of Weyl generators. Explicit constructions of RIS are considered for operators of
su(l, 1), su(2), hy andsp(N, R) algebras. Unlike the group-related CS, RIS can exhibit strong
squeezing of group generators. Multimode squared amplitude squeezed states are naturally
introduced assp(N, R) RIS. It is shown that the uncertainty matrices for quadratureg-of
deformed boson operatotg ; (¢ > 0) and of anyk power ofa; = a1 ; are positive definite

and can be diagonalized by symplectic linear transformations.

1. Introduction

Canonical coherent states (CS) [1,2] in quantum optics and quantum mechanics can be
defined in three equivalent ways: (1) as eigenstates of the non-Hermitian boson (photon)
destruction operata#; (2) as orbits of the oscillator ground std@® under the action of
unitary displacement operat@(«); (3) as states which minimize the Heisenberg relation
for canonical observables= (a+a')/~/2 andp = —i(a—a')/+/2 with equal uncertainties.
Correspondingly, there are three ways of generalizing canonical CS [3]. The second one
is the most general one considered, which consists of constructing orbits of a reference
vectors|yg) under the action of unitary operators of irreducible representations of a given
Lie group [2,3] O(x) realize ray representation of Heisenberg—Weyl gréfip. These
generalized CS are known (and should be called here) as group-related CS [2].

The main aim of this paper is to consider the third way of generalizing (the intelligence
way) the case ofi observables and its relationship with the first two methods. The idea is
to look for a generalized uncertainty relation foobservablest,, u = 1,2, ..., n, which
minimization would yield a continuous family of states such that in caseX obeing
generators of a Lie group it would include the corresponding group-related CS.

It turns out that the required generic uncertainty relation (URxfobservables is that
of Robertson [4], equation (1) (see also the review [5] on generalized uncertainty relations).
Here we show that it is minimized in the eigenstates i (for evern) independent complex
linear combinations ofX,, or (for anyn) of at least one real combination. Whéf), are
guadrature components of Weyl generators of a semisimple Lie group [6] these minimizing
states contain as a subset the corresponding group-related CS with symmetry [2, 3]. Thus,
it is the Robertson relation that naturally connects the above three ways of generalization

0305-4470/97/175941+17$19.5@C) 1997 I0OP Publishing Ltd 5941



5942 D A Trifonov

of CS on the level ofz observables. In the case of the mode electromagnetic field we
get that Robertson UR (RUR) is minimized if and only if the state is an eigenstate of
new destruction operatow§ = ujrax + vjka,i. For brevity, states which minimize some
uncertainty relation should be called hénéelligent stateq1S) (the term IS was introduced
in [7] in the example of spin states which minimize Heisenberg UR). The temmelated
[8] is reserved for states with nonvanishing covariances (correlations).

The first step in the first method of CS generalization was made in [9-11] where
eigenstates of complex combinations @f and a;, j =1,2,..., N, were constructed
and discussedN = 2 in [9], N = 1 in [10], any N in [11]). Later [8], it was shown that
eigenstates afa +va’ minimize the Schidinger UR (SUR) [12] fo and p (equation (3)),
the minimizing states being callezbrrelated CS. Those CS are in fact the same [13] as
canonical squeezed states in quantum optics [14]. In [15] it was proved that SUR for
any two observableX andY is minimized in eigenstates of their complex combination
AX +iY (equivalently ofuA +vAT, A = (X +iY)/+/2, » andu, v are complex numbers).
Eigenstates oftA + vAf can exhibit strong squeezing iXi and Y. Schibdinger IS (SIS)
for the generatorXi, K, of SU(1,1) were constructed in [15] and shown to combine
the Barut—Girardello CS [16] an8iU (1, 1) group-related CS with symmetry [3]. The full
sets of even and odd SIS for quadratures of squared boson destruction opérasare
constructed in the second paper of [19] (see also [31, 30]). Eigenstates 6fvA’ with
real u and v are noncorrelated SIS, that is Heisenberg IS, and the cas&s 16fbeing
quadratures ofia or of the productzb of two annihilation operators were considered in
[17].

Another purpose of this paper is to consider the diagonalization problem of the
uncertainty matrix, denoted here by This matrix is of direct physical significance since
its elements are dispersions (variances) and correlations (covariances) of observables.
also important in quantum-state geometry [18]. In the case of canonical opejators
diagonalization oy was considered in [19].

The paper is organized as follows. In section 2 we briefly review Robertson relations for
the uncertainty matrix for n observables(,,. In section 3 we consider the diagonalization
of o by means of linear transformations &f,. We note that in any state can be
diagonalized by means of the orthogonal transformation. From this it follows that the spin-
component correlations can be eliminated by coordinate rotation. When the uncertainty
matrix is positive definite (as is the case oV Zjuadratures ok power of boson/photon
annihilation operators; and the case of quadraturesgetleformed boson operatoag, for
g > 0) it can also be diagonalized by means of symplectic transformation. A new family
of trace class UR (15) is established for positive definite dispersion matrices.

In section 4 we study the minimization efdimensional RUR. In section 5 explicit
examples of RIS are considered, the(1, 1) and su(2) RIS being discussed in greater
detail. RIS for generators dfU (1, 1) in the quadratic bosonic representation can exhibit
linear and quadratic amplitude squeezing (even simultaneously—joint squeezing of two
noncommuting observables).

2. Robertson uncertainty inequalities
For n observables (Hermitian operatorX), Robertson [4] (see also [5]) established the
following two uncertainty relations for the dispersion matsix

deto > detC 1)

011022 . .0y, = deto (2)
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whereo,, = (X, X, + X, Xu)/2 - (X,)(X,) and C is the antisymmetric matrix of mean
commutatorsC,, = —(i/2){[X,, X,]). Here(X) is the mean value ok in quantum state
0, which is generally a mixed state. For= 2 inequality (1) coincides with SURX(; = X,
X,=7)

APXA%Y —o?XY > F[([X, Y])? ®)

which in turn is reduced to the Heisenberg UR f&r and Y when the covariance
oxy = (XY +YX)/2 — (X)(Y) is vanishing A%X = oxx, A%Y = ayy).
Combining (1) and (2) one obtains

011022...0up, > detC (4)

which can be treated as a direct extension of Heisenberg UR to the casepefators.

The uncertainty matrix (dispersion or correlation matx)= o (X, p), where X =
(X1, X2, ..., X,), is symmetric by construction. From Robertson inequalities (1) and
(2) one can deduce that its determinant is always nonnegative. Indeed, the matrix of
mean commutators is antisymmetric and the determinant of the antisymmetric matrix is
nonnegative [20]. Thereby in any statewe have de€ > 0. detC vanishes identically if
the number of operators is odd.

Diagonal elements af are the variances of,,. The problem of reducing (squeezing) of
variances of quantum observables is important in physics (in quantum optics [14]) of precise
measurements and telecommunications. The nondiagonal elements are the covariances of
X, andX, and describe{,—X, correlations. The uncertainty matrix in pure stagg) can
be used as a metric tensor in the manifold of generalized Glaub& @§gvo) [18]. In view
of these dynamical and geometrical propertiesrdf is desirable to study the problem of
its diagonalization (which is equivalent to the problem of minimizing the second Robertson
relation (2)). Diagonalization af in the case of canonical observables= X;, ¢; = Xy,
j=12,...,N, was recently considered in [19]: in any state it can be diagonalized by
means of linear canonical transformations. In section 3 we consider this problem in more
general cases. The minimization of (1) for two observabifesand X, (i.e. of SUR (3))
has been shown [15] to occur in the eigenstates of their complex (in particular real) linear
combinations only. In section 4 we extend this result to arbitrary

3. Diagonalization of uncertainty matrix of n observables

In this section we consider the diagonalization of the uncertainty mattX, p) by means
of linear transformations ot operatorsX, (summation over repeated indices),

X, — X, =X, (5)

wherex,,, are real numbers (in order fof;, to be Hermitian operators again).
We first note the transformation property @funder transformation (5). Defining the
new matrixe’ aso’ = o (X', p) we easily obtain

o' = Ao AT (6)

where we introduce the vector X' = (X7,..., X)) andn x n matrix A = {A,,}, its
transpose being denoted ad. Thus, the two dispersion matrices are congruent via the
transformation matrix\. We suppose that transformation (5) is invertable and set detl.
In matrix form equation (5) is rewritten aX’ = A X.

We note several general propertiesogfsome of which are immediate consequences of
its symmetricity and the transformation law (6). First, we note the invariant quantities: (a)
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deto = deto’ for any A € SL(n, C); (b) Tro* = Tro’*, k = 1,2, ..., for orthogonalA;
(©) Tr(o JHY* = Tr(o’ J)* for symplectic transformations: (= 2N),
T 0 1y

AJAT = J_<_1N o)‘ 7
The last two invariants are particular cases of quite general relatioas,gTr = Tr(o g)*
which hold for A satisfyingA” gA = g with any fixed matrixg (in the aboveg = 1 and
g=J).

Next we note thato (being symmetric) can always be diagonalized by means of
orthogonal A (AAT = 1) [20] in any state, i.ec’ is diagonal for some orthogonal.
In the case of spin (or angular momentum) operators, we obtain from this property that
spin-component correlations can be considered as pure coordinate effects. Another general
property ofo is its nonnegativitys > 0. To prove this last property we diagonalizeby
means of the orthogonal matrix. The new operatorX’ , equation (5), are again Hermitian
and therefore all the diagonal elements of the mairixare nonnegative. Therefore> 0
in any statep.
Further properties of the uncertainty matrix can be established when the set of operators

X, possess some additional properties. For example,i#f positive definiteg > 0, then
it can be diagonalized by means ®fmplecticA [21]. Therefore it is important to know
when the uncertainty matrix is strictly positive. The value ofdet O turned out to play
an important role. Note that det> 0 stems froms > 0 and det = 0 means that is
not strictly positive.

Proposition 1.deto (X, p) = 0 in pure statep = |y ) (y| iff |¢) is an eigenstate of a real
combinationi, X, of X,.

Proof. (a) Necessity. Let det(X, p) = 0. Then orthogonalA exists such that’ is
diagonal. We have &- detos = dets’ = o4,05,...0,,, Wherefrom at least for one one
haso,, = 0. The latter is possible in pure states= |y)(y| if and only if X |v) = x,|v¥).

(b) Sufficiency. LetAX)|y) = x'|¢¥), AX = A, X,. Then we can always construct the
nondegenerate matrix with first row (14, A2, ..., A,) and consider the uncertainty matrix
o' = o(AX; ). Thiso’ is with a vanishing determinant since the first column of it is
zero (as a consequence XX)|y) = x'|y)). But 0= deto’ = (detA)?deto, therefore
deto = 0.

In view of this proposition and equation (1) one has the following.

Corollary 1. If detC(X, ) > 0 then|y) cannot be a normalizable eigenstate of any real
combinationi, X ,.

If detC(X; ) > 0 in any state then neitheX,, nor any real combination,X, can
be diagonalized in Hilbert space of stat&s that is the spectrum ok, and A, X, are
continuous. Here is a class oN2operators for which detf > 0 and therefore is positive
in any state.

Proposition 2.1f X,, n =1,2,...,2N obey the commutation relations
[Xj, Xnax] = 8l X, Xnyj] [X), Xx] =0=[Xn4j, Xnsi] (8)

where —i[X;, Xy+;] are positive definite operators, then d&tX;p) > 0 and the
uncertainty matrixo (X; p) is positive definite.
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Proof. By direct calculations we obtain
detC = ()*((—=D)[X1, Ya])((=D)[ X2, Ya])? ... (=D[ Xy, Yn])? ©)

whereY; = Xy4;, j =1,2,..., N. Since every factor in (9) is positive one has det 0.
From corollary 1 and the diagonalization @fby orthogonalA we derive that def’ > 0O is
a sufficient condition fow to be positive definite. O

We can point out a family of the boson system (e\y.mode electromagnetic field)
observables which obey the commutation relations (8). Those are the quadrature components
of powerk of photon (boson) destruction operatars defined here as

1 —i
V= —@+dh  xV,=—

T V& VT 2k

Relations (8) and the positivity o£i{ X, Y] = (1/k)[a*, a*] can be checked by direct
calculations. As a result, the quadrature components“ofire continuous observables,
their uncertainty matrix is positive definite and can be diagonalized by means of symplectic
A. Fork = 1, operators (10) are the canonical pajrs p;, therefore their uncertainty
matrix can be diagonalized by means of linear canonical transformations, corresponding
to symplecticA. The procedure for diagonalizing a positive definite matrix by means of
symplecticA is described in [21] and in the first paper of [19]. Canonical transformations
with time-dependeniA () can be used to diagonalize any quadratic Hamiltonian. For an
oscillator with varying mass and/or frequency this was done by Seleznyova [22].

Positive definite uncertainty matrices also existghleformed boson systems. &
deformed oscillator was introduced in [23]. The deformed lowering and raising operators
aq anda, obey the commutation relation

(af —a;") =Y. (10)

. N _ ,—N
[ag.all =[N, +1 =[N, M= =L (11)
q9—4q
where N, is a number operator whose eigenstates|ayg = ([n]!)*1/2a2"|0)q: Nyln), =
nln)g, aql0)g =0, [n]! =[n][n —1]...[1]. At ¢ =1, q, a; coincide with ordinary boson
operatorsa, a’. Now we note that the commutatos,| a;] is positive definite forg > 0
as one can easily verify by using (11). From the commutation relations fpdeformed
oscillators [24]

lag.j» aqi]l =0 lag. at},k] = djilag.j, aé,j] (12)

[Ng.j» agk] = —8jkaq.x [Ng.j>ay,] = 8xay ;

it follows that the set of quadrature components @f; obey the requirements of
proposition 2 forq > 0. Therefore the uncertainty matrix(X,; p) is positive definite
in any state foy > O.

For the positive definite uncertainty matrix ofV2observables satisfying (8) one can
establish a set of new uncertainty relations. For this purpose consider the invariant quantities
Tr(icJ)*,k=1,2,.... Leto’ be a diagonal matrix which is symplectically congruent to
o. Then we have

N
Tr(io )% =Tr(io' ) =2 [of joh vy i1 (13)
J
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In view of o > 0, every temnj”jo;vﬂwﬂ in (13) is nonvanishing and positive. We can
apply the Heisenberg relation foy‘ja;\,#w#j and write the set of inequalities

N
Trlio )% > 2 " 15X}, Xy DI~ (14)

J

In the aboveX; = A,.(p)X, and A(p) is the diagonalizing symplectic matrix for the
statep. For every state we can in principle find the minimal vahéep) of the N terms

(X}, X/

v+;1)| and therefore rewrite (14) in a more compact form

N
: 2% 2% _
Tr(ic )™ > 221(,1‘10 k=12, .... (15)

In the particular case of canonical variablés= p;, Xy, = g; in any state the products
O JON+IN+] are_greater than or equal fp (this is the value ob; ;on, v+ IN Glauber
CS for modej, A = 1), that i5c(2) > 1. Thus, for canonical variables the above UR read

(Q=(pls"'7pN’ql7"'qu))

. N
Tilio @ pJI1* > s (16)

The latter inequalities for the case®fQ, o) (apart from the factor i) were recently obtained
by Sudarsharet al [19]. For N = 1 andk = 1 inequality (16) recovers the Sdtinger
relation (3).

The above-considered diagonalization of the uncertainty matrixHdrmitian operators
by means of transformations of operatéfs — X, should be referred to here as first-kind
diagonalizations. The stajehere is kept the same. This diagonalization is always possible
as we have shown. But it is also of interest to know whkeran be diagonalized by
state transformation, keeping observables the same. That is for &iyeand statep find
the new statep’ so that the new matrix” = o (X, p’) is diagonal. We shall call this
second-kind diagonalization. Evidently, both diagonalizations coincideo(i.e. o) when
transformation (5) is generated by some unitary oper&tox),

X!, =hwX, = U(MX,U(A). (17)

Such is the case for example of uncertainty madr{), o) of canonical operatorg; = Q;

andg; = Qn4+; wWhen the diagonalizing\ is symplectic. TherU (A) is a representation of

the groupSp(N, R) [6] (more precisely ofMp(N, R) = Sp(N, R)) and thus any pure or
mixed canonical correlated state is unitary equivalent to the noncorrelated state. In the case
of N = 1 we have an extra diagonalizing property: in view of the fact that the squared
boson operators?, a'?, a'a close thesu(1, 1) algebra, equation (52)%(1, 1) ~ sp(1, R))

we get that in the one-mode field case the quadratic amplitude dispersion matrix is also
diagonalizable by unitarp(1, R) state transformation. Property (17) also occurs in
the cases whei, close orthogonal algebre(n, R). Then the diagonalizing orthogonal
transformation (5) is generated by unitaty(A) € SO®, R). In the example of

s0(3, R) ~ su(2) this means (recall that if, are spin operatorsJf, J;] = ikej;J;, and A

is orthogonal then/;, J/] = ihej; J)) that spin-component correlations (covariances) in any
state can always be eliminated by means of coordinate rotation (first-kind diagonalization)
and by state transformation with unitary operatotA) (second-kind diagonalization). In
other words spin-component correlation is a pure coordinate effect and any spin-correlated
state is unitary equivalent to a noncorrelated one.
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4. Minimization of Robertson uncertainty inequality deto > detC

One general sufficient condition for the minimization of Robertson inequality (1) for arbitrary
observablesx,, u =1, 2,...,n, follows from proposition 1: the equality in (1) holds in
the eigenstates of at least one X3f since in such a case both matricesand C have at
least one vanishing column and then det detC = 0. In view of the fact thab can
always be digonalized by means of orthogona{second immediate property in section 2)
the minimization of both Robertson relations for amyalso occurs in the eigenstates of
some ofXL =Xy,

In the case of oda the above sufficient condition for the minimization of (1) is also a
necessary one. Inequality (1) is minimized in a stgtgif and only if |4/) is the eigenstate
of a real combination., X, of observablesX,. The proof follows from proposition 1 and
the property of the determinant of antisymmetric matrices of an odd dimension: fot odd
detC of antisymmetric matrixC is vanishing identically in any state.

detC can only be greater than O for even For an even number of operataXs, we
establish the following sufficient condition.

Proposition 3.The equality in the RUR (1) for ® Hermitian operators,, holds in the
eigenstate$y) of N independent complex linear combinationsXf.

Proof. Let XL = AnX, = XL(A) be some linear transformation which preserves
the hermiticity, i.e.r,, are real parameters. We introdudé non-Hermitian operators
A; = X; +iXyy; and constructV independent complex combinations of &ll, in the
form,

A; = XJ/ + iX;Vij = MjkAk + UjkA]]: (18)

whereu;, andvj; are new complex parameters which are simply expressed in terig of
(j,k=1,2,...,N). Now let|¢) be eigenstate of allt’,

AllY) = 1Y) j=12....,N 19)

z; being the eigenvalue. It is natural to denote the solutions of (19)zas, v) or
equivalently agz, A), whereu, v are N x N matrices andA is 2N x 2N.

The scheme of the proof is to express both matriegX, ) and C(X, ¢) in
terms of matriceso (B’, ¥) and C(B’,vy) and to compare their determinants. Here
B = (A1, Ag. ..., Ay, Al AL ... Al) = (A, AT) and B’ = (A’, A'). First we relateX
to B,

_ _1(1y Ly
X =bB b= (ilN _ilN) (20)

where Iy is N x N unit matrix. We introduce ® x 2N transformation matrix/, which
relatesB and B/,

’ u v
B'=VB V:(v* u*) (21)
whereu andv are N x N matrices of transformation (18). We consider the new operators
A} independent (as well as the old ongg, therefore matriX/ is supposed to be invertable,
that is detV £ 0. Using the above two linear transformations and the definition ofe
obtain

o (X, ¥) =bV o (A, )V HT BT (22)
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and similarly

C(X,y)=bvicB, v)(vHTp". (23)
Next, using the eigenvalue equations (19) we can prove the equality

deto (B, ¢) = detC(B', ¢) (24)

which in view of (22) and (23) (and the nondegeneracy ahdV, detb = (—i/2)") leads
to the desired equality in the RUR (1),

deto (X, ¥) = detC(X, ¥). (25)
The proof of auxiliary equality (24) can be carried out by direct calculations: one has
oj(B',¥) = 0= Cix(B', ¥)
onNtjN+k(B', ) =0=Cnyjn (B, ¥)
ojNk(B', ) =iCj ni (B, ¥)
ontjk(B' ) = —iCnyji (B, V)

which manifestly ensure (24). Thus, the states which satisfy equation (19) minimize
inequality (1).

States which minimize RUR (1) for observableX,, X,, ..., X,,) = X should be
called Robertson intelligent statefor X (briefly X-RIS). Equivalent terms could be
Robertson minimum uncertainty states or Robertson correlated states, following for example
[5, 8, 13]. However, we reserve the term correlated for states with nonvanishing correlations
(covariances) only. In the case of everin view of (19) and (18), RIS should be denoted as
|z, u,v) or|z, A). Forn = 2 relation (1) coincides with the Sddinger one, equation (3),
and RIS are in fact SIS. For two observables condition (19) is necessary and sufficient [15]
to obtain the equality in SUR.

Following the analogy to the known case of canonical observahlesndg; one can
introduce the squeeze operator [3, 14, 33] for arbitrary observables (generalized squeeze
operator) S(u, v) as an operator which is a map from noncorrelated RIS with equal
uncertainties for all pairsX; andY; = Xy, ; (those RIS minimize Heisenberg relation
for 2N operators (4)) to correlated RIS (RIS with nonvanishing covariances and nonequal
variances). Noncorrelated RIS with equal uncertaintiesXprand Y; are obtained when
Ujp = (Sjk andvjk =0in |z, u, v).

Su,v) :|z,u,v) = Su,v)z) (27)

(26)

where |z) = |z, u = 1, v = 0). |z) are eigenstates of alA;, j = 1,2,...,N. For

two arbitrary observables the operat®fu, v) was introduced in [15]. This definition is

of importance for the generation of RIS, u, v) from |z) when the stategz) are known

and available. 13z) with equal uncertainty for two observablés Y are constructed, in
different notations, in a number of cases [1, 8, 16, 25-27]. It is interesting to note that for
certain systems the squeeze operdtar, v) may exist as an isometric (not unitary) operator.
Such is the case o (u, v) for the quadratures of squared boson annihilation opetgtor
considered in [31]. IfS is isometric then its generatdd (defined byS = exp(iH)) is
symmetric (not Hermitian= selfadjoint) operator and can be considered as a generalized
observable [28]. In such cases represenfing exp(it H) (¢ being real parameter, the time)
we see from (27) that RIS (for = 2 in fact SIS)|z, u, v) can be generated from states
with equal uncertaintieg) in a process of nonunitary evolution governed by symmetric
Hamiltonian H. Symmetric but not selfadjoint is for example the particle momentum on a
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half line and the Hamiltonian of a particle with different mass parameteps,ilf and Z
directions (moving in a crystal) [28].

Now a natural question of the existence of RIS arises. We have a positive answer to
this question for a broad class of observabitgs RIS exists for the operators of Hermitian
representations of semisimple Lie algebras in Hilbert spacand for representations
of solvable algebrad. in finite-dimensional. RIS may exist for infinite-dimensional
representations of certain solvable algebras. The existence of RIS for any finite-dimensional
representation of a solvable Lie algehtastems from the theorem [29] that any such
representation possess at least one weight (i.e. a vector exists, which is the eigenvector of
all elements ofL).

5. Examples of RIS

5.1. RIS for semisimple Lie algebras

First we note that for any Lie groug the group related CS [2, 3} (g)) = U(g)|vo)

with |yo) being eigenvector of at least one generaXgr (these are CS with symmetry)
universally are RIS for the generators 6f Indeed,U(g)|vo) is evidently an eigenstate

of Hermitian operatot/ (g) X, U'(g) (U(g) is a unitary representation ¢f). Then we can
apply proposition 1 and get det X ; v (g)) = 0. Here deC also vanishes identically with
respect tog € G, i.e. deto (X; ¥ (g)) = detC(X; ¥ (g)) = 0. If G is semisimple then
Hermitian generatorg?; from Cartan subalgebra always have normalizable eigenvectors
|vo) [6]. Therefore CSyr(g)) with these|yo) as reference vectors are RIS for all group
generators (with the trivial minimization: det= detC = 0 identically with respect to

g € G).

We shall now prove that C§/(g)) with maximal symmetry are RIS for the quadrature
components of Weyl lowering operatois , with the property det > 0. The proof
consists of an application of proposition 3. The number of quadrature compaXignis
of all E_; is even, denoted byrZ,, wheren, is the number of Weyl operatorg_;:

E =Xy — Xy = X¢ —iYy, k =1,2,...,n,. We shall prove that equation (19)
(the sufficient condition for RIS) is satisfied by G(g)). As operatorsd; we take here
E_, and asA; we have to take linear combinations of Weyl lowering and raising operators
uirE_x +vjxEx, j,k=1,2,...,n, and then consider the eigenvalue equation

Wik E_x + v Ex) |z, u, v) = zj|z, u, v). (28)
Consider the action ofij  E_x + vjEx on the stately(g)). One has (summation over
repeated indicesk; = ET_,(, H = H,T)
(Ui E—x + v EDNY (8)) = Wik E—r + vix EQ)U ()| ¥o)
= U(g)U_l(g)(”jkEfk + Vi EQ U (8)1¥0)
= U@ kit + v V) E—i + (Vi + vjity;) E;

+ (kWi + Vi Wi) Hi] | Wo). (29)
In the above we have applied the BCH formula to the transformationst, U (k, j,i =
1,2,...,ny,l,m=12 ..., n. n. being the dimension of Cartan subalgebra)

U NQEU(Q) = i E—i + Ui Ei + i H). (30)

Taking into account thak_;|yo) = 0 and H;|vo) = h;|yo) we see thaty (g)) should be
an eigenstate of am} if the n,, x n,, matricesu, v, # andv satisfy the equation

uv +vi* =0. (32)
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In the last equationi = u(g) and v = v(g) should be treated as known for a given
Lie group representatiot/(g). Moreover, the matrix: is nondegenerate. Therefore we

can always solve equation (3%),= —ud(g)i* 1(g) and get|¥(g)) as an eigenstate of
Al = ujE_ + vk Ex,
(UjrE—r + v EDIY(8)) = z;1¥ () (32)

with eigenvalues; = (ujrwiu + vjxWw)h. In view of (32), the group-related CS with
maximal symmetry|y(g)) can be parametrized as RIS for,2 components of Weyl
generators]y¥ (g)) = |z, u, v) whereu andv aren,, x n,, matrices.

Thus, we have demonstrated that states from unitary (in particular unitary and
irreducible) orbits of extremal weight vectors of semisimple Lie algebras are RIS for all
basis operatorX,, and for the quadrature®;, Y, = X, 1+« of Weyl operatorsE_; as well.

As far as we know, this intelligence property of the group-related CS has not been noted
yet in the literature.

We stress that RIS for quadrature components of Weyl generatqrare more general
than the group-related CS with maximal symmetry: stéfe)) are only a part of the set
of solutions of eigenvalue equation (28), corresponding to constrain (31) on the parameters
ujr andvj,. In the example ofu(1, 1) andsu(2) (n, = 1, n, = 1) this was analysed by
explicit constructions of SI%, u, v; k) in [15].

It is worth noting that propositions 1 and 3 can be applied to any subset of the operators
of a given Lie algebrd.. Therefore it makes sense to consider the eigenvalue problem for
general element of the complexified algeldra,

B X)) = z|¥) (33)

whereX, (v =1,...,n) are basis operators df and g, are complex parameters. Taking
specific constrains on the complex paramefgrene can get various subset of RIS for less
thann algebra operators, in particular variois-Y; SIS. The property of group-related CS

to be part of the set of eigenstates of complex linear combinations of all algebra operators
was noted in [30, 31]. States that satisfy (33) could be called algebraic CS [31] or algebra
eigenstates [30].

5.2. Explicit solutions for su(1l) and su(2) RIS

First consider theu(1, 1) case. The basis elementssaf(1, 1) are the three operato#s,,,
w =1,2, 3, which obey the relations

[K1, K2] = —iK3 [K2, K3] = 1K, [K3, K1] = iK>. (34)

The Casimir operator i€, = K2 — K5 — K? = k(k — 1) and Weyl lowering and raising
operators are&K; = K; FiK,. According to the previous discussion, RIS for all three
algebra operators and for any p#jj—K; are contained in the set of eigenstates of general
element of the algebra. Therefore one has to consider the eigenvalue equation for the general
element ofsu€ (1, 1),

wuK_+vK,; +wKs)|z,u, v, w; k) = z|z, u, v, w; k) (35)

whereu, v, w are complex parameters, simply relategiantroduced in (33). This equation

can be solved [31, 30] using the Barut—Girardello CS representation (BG representation)
[16] or the SU(1, 1) group-related CS representation [2,3]. The solution can be carried
out for su(1, 1) representations with Bargman indéx= 211, 231 and for the discrete series

k=113 ... (particular cases o6 = 0 = w andw = O were solved in [16,15]. The
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Barut—Girardello CS (BG CS)y; k) are eigenstates ok_: K_|n; k) = n|n; k). In this
representation
d o? d
K, = K =2%k— +n-—s Kz=k+n 36
+=1 dn+ndn2 3 +”dn (36)

and statesyr) are represented by analytic functioign) which up to a certain common
factor f(|n|) are proportional tok; n*|y). Orthonormalized eigenstatés; k) of K3 are
represented by monomialg” [ (k)/(m!T (m + k))]¥?. Foru # 0 the required analytic
solution of (35) is [31]

D, (n;u, v, w) = N(z,u, v, w)expicn)M(a, b, c1n) (37)

where N(z,u, v, w) is a normalization constantM (a, b, n) is the Kummer function
(confluent hypergeometric functiorFi(a, b; n)) [32], parameterg, b, ¢ andc; are

a=k+ 2;4 b= 2%
L we — auUv L (38)
c=-—a <w+ w2—4uv> c1 = —vVw?—4uv
u u
and the normalizability conditions take the form
ﬁ‘w—\/wz—mw <1 or ﬁ‘w+\/w2—4m} <1 (39)

When inequalities (39) are broken down the functidngn; u, v, w) are still solutions of
equation (35) and could be considered as nonnormalizable eigenstates. In the:cas@ of
in equation (35), we have (in view of (36)) a first-order equation to solve [31]. It turned out
that the solutions for this case could be obtained frbpan; u, v, w; k) taking appropriate
limits in it. One can check that conditions (39) can be satisfied byweahdv = u* when
the operatouK_ + vK, + wK3 becomes Hermitian. Then the algebraic states, u*, w)
(w = w*) are RIS for the three observablks, K, andK3. RIS for the nonsquare integrable
representations correspondingite= % g are considered in section 5.3.

Various known states are contained in the large familyuafl, 1) states|z, u, v, w; k)
[31]. In particular, wherw = 0 we get the SISz, u, v; k) for the noncompact generators
K1 and K, which in turn at; = —k+/—uv [15] recover the family ofSU (1, 1) group CS
|t; k) (the squeezed vacuum states [3])= /—v/u, |7| < 1. In view of the positivity
of the commutator Ky, K»] = [K_, K]/2 the uncertainty matrix (K1, K»; p) is positive
definite and therefore possesses the resulting properties, described in section 2. In IS
|z, u, v; k) the matrix elements of are

1 |u—vl? 1 |u+v)? Im(u*v)

= - — K O = - — o =
2uf? = o2 2= = K BTz =2

satisfying det = detC = (K3)?/4. The K1—K3 and K,—K3 IS are obtained from
|z, u, v, w; k) whenv = u andv = —u respectively.

The case ofu(2), RIS (i.e. spin RIS) can be treated in a similar manner by using the
representation of§U (2) group related CS¢; j) in which [3]

011 <K3) (40)

d d d
=42 = =r— — . 41
J §d§+ j¢ J d J3 gdg J (41)
Here j = 1 1.3 .., [J_.J] = —2J3 [Ja,Je] = +Jx (J+ = J1 £ i) and

J2=J2+ J222+ Jé = j(j + 1). The required eigenvalue problem

BuIW)z, B: j) = zlz, Bs J) (42)
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where3 = (81, B2, B3) (B, are complex parameters) was solved by Brif [30]. In the case
of b2 = BB # 0+ B — i, = B_ the solution is [30]
Jj+z/b Jj=z/b
d>z(c;ﬂ,j>=1vo<¢— e b) (4—’33“’)

p- p-
with the normalizability conditioy = mb, m = —j, —j+1,...,j—1, j. As we expected,
thesesu(2) RIS contain the set of standafd/(2) CS with maximal symmetry;’; j) and
this occurs whem = +j with ¢’ = —B_(z3Fb)~* [30]. At Bz = 0 thesu(2) RIS coincide
with the SchodingerJ;—J, IS considered in [15].

For thesu(2) observabled, (the spin components) it is important to note that the spin-
component uncertainty matrix(J; p) in any state can be diagonalized by means of an
orthogonal linear transformation df. The latter can be induced by rotating coordinates in
R3 sincesu(2) ~ so(3). Therefore we deduce that spin-component correlations are of a pure
coordinate nature—they can be eliminated in any state by rotations of the reference frame.
Here one can also perform second-kind diagonalizatiosn,dfeepingJ, and transforming
the statep by an unitary operatot/ (g) of SU(2) ~ SO(3). Thus, correlated spin RIS are
unitarily equivalent to noncorrelated spin RIS.

(43)

5.3. RIS of the multimode boson systems

In this section we first consider = 2N canonical operatorg; andg;, j = 1,2,..., N,
which are quadrature components &f boson/photon destruction (creation) operators
aj = (qj +ip)/V2 (a_,T = (g; —ip))/v2): [g;, p] = i8;x. Here for concreteness we put
X, = 0., Qj = pj, On+j = q; and A; = q; +ip; = a;+/2. The set ofQ,, and the unity
operator close the Heisenberg algehga which is nilpotent (therefore nonsemisimple). So
RIS for canonical observable3, areiy RIS (to also be called the multimode amplitude

RIS). According to proposition 3, eigenstates u, v) = |, A), a = (a1, a2, ..., ay), Of
a.;,

a; = ujrax + Ujka;k = 3[(A)jkqk + (Ap)jk il (44)
with anyu« andv are RIS forQ,,

aj/-|a;u,v)=aj|a;u,v) j=1,2,...,N. (45)

Hereu = (A, —iXp)/2,v = (A +1i1,)/2 andu, v, A, andx, are N x N complex matrices.
The N x N matricesi, and, are related to the transformation matrxin (5) (which is
now rewritten asQ;L = A Q,) as follows

A= G; ii) dp=hatity Ay =id2 e (46)
If one imposes the symplectic conditions/A” = J on A, the operators:; become

new annihilation operators, i.e. the linear transformation (5) becomes a canonical one.
With this conditions@-RIS are unitary equivalent (with the methaplectic operdfgn))

to eigenstates ofi;, i.e. to the canonical multimode Cf). In [11] states|a, A(¢))

were constructed explicitly as a solutipn; #) of the time-dependent Sdbdtinger equation

for general quadratic, possibly time-dependent, Hamiltontan= B,,(t)Q0,Q, (plus
linear terms as well). In terms of parameter matriggsand A, these canonical RIS

la, A) = |a, u, v) in the coordinate representation reatl £ 0 in equations (17) of the

third paper of [11])

(glos; A) = n"*exp(y + g — Fqjiq) (47)
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whereji is N x N matrix, i =i, 'r,, U is N vector,i = (1/\f2)()J, - A;lquf,)a and
1 i B N
y = _§|a|2 + aa(xf,xplqu;, - aha.

At A = 1 the RIS (47) coincide with canonical G&) in the coordinate representation. The
multimode states (47) in different parametrizations were also considered in several papers
under the names multimode squeezed states [33] or multimode/polymode correlated states
[19, 34, 35] or Gaussian pure states [35].

It is worth noting that for canonical RIS the condition (45)(19) is not only sufficient,
but also necessary, i.e. a)-RIS are eigenstates oi; = ujra; + vjkajk for some u
and vjx. This can be proved by using the diagonalizationoai@, p). Indeed, let
o = o(Q,p) = o(Q,p) be diagonal. Herep’ = U(A)pUt(A), where U is the
methaplectic unitary operator. Since the mean commutator matris now constant,
detC = 47 the equality in RUR is det = deto’ =[] o/,0,; v.; = 47". Since for
every j the producto/;oy ; v, ; is greater than or equal tg) we obtain that all products
should be equal tc%. But this is only possible iffp is a pure multimode CS for new
variables@’, that isp is pure state, methaplectically equivalent to multimode CS for old
variablesQ, p = U(A)|a){a|UT(A).

Consider briefly the uncertainty matrix of canonical observableQ, p). Since Q,
satisfy the requirements of proposition 2 #éQ), p) is positive definite. Therefore it can
be diagonalized by means of linear canonical transformation in any stated it obeys
inequalities (16). IMQ-RIS |, A) the dispersion matrix (Q; a, A) has further properties.
The main one is thad (Q; «, A) is symplectic itself. Indeed we have

0(@;a,A)=0(Q;a,1)=Ac(Q; o, AT (48)

whereo (Q; o, 1) is the uncertainty matrix in multimode canonical (&). The latter is
evidently proportional to the unityy (Q; o, 1) = % and therefore ifA is symplectic then
20(Q; o, A) is also symplectic. We expressin terms of N x N uncertainty matrices,,,

Oqqr Ogp aNdoy, = aqu

Q) = ("PP "M) (49)

Ogp  Oqq
and write the symplectic properties 6{Q; o, A) in N x N matrix form,
2 1
OppOap = OpgOpp = 0= 04p0yq — 04q0pq OppPqqg — Opg = 3- (50)
For N = 1 the last equality is just the equality in the Sathinger relation (3), the first two
being satisfied identically in any state.
For boson systems it is of interest to consider observables which are quadratic

combinations of creation and annihilation operato}sand ax (or equivalently ofp; and
qx)- Quadratic combinations

j' K;f) = %(a;ak + aZaj) (51)
close the simple noncompact algebrg N, R) [6], the noncompact elements being spanned
by lowering and raising operato#s;;, and Kjk. In the one-mode casg (1, R) ~ su(1, 1)
and

_1 o1t 1
Kjr = Zaja K = 34

Ja*=K_ ja? =K, 3(d'a + 1) = K. (52)

Operators (51) are generators of the methapletic gradfp(N, R), which covers the
Sp(N, R). sp(N, R) RIS in representation (51) should be called the multimode squared
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amplitude RIS. RIS for the quadratur&s, andYj; of K, Kjx = Xjix + 1Y (shortly K-
RIS), are eigenstates @f x N complex combinations of lowering and raising operators
Kjx and K}k and according to our general result they contain group-reldedN, R)
CS with maximal symmetry|y (g)) = U(g)|0), U(g) € Mp(N, R), the extremal vector
being the multimode boson vacuuff) (these CS coincide with multimode squeezed
vacuum states [19,33,34]). On the other haMp(N, R) CS are annihilated by all
a) = U(g)a;U~X(g) = ujar + vjra). Hereafter we obtain the property thatp(N, R)
CS with maximal symmetry are simultaneougly andsp(N, R) RIS (i.e. amplitude and
squared amplitude multimode RIS, double IS). In the coordinate representation and in the
parametrization by, andi, (a’ = A,q + A,p) these multimode double IS are given by
formula (47) witha = 0.

Another explicit example of p(N, R) RIS is given by multimode squeezed Fock states
U(g)In), whereU(g) € Mp(N, R). Indeed, Fock stateg:) are eigenstates of Hermitian
Mp(N, R) generatorsl(}f’) = aja_,-/z (see equation (51)), therefot&g)|n) are eigenstates

of Hermitian operatory(g)l(;f)U(g)T which are real linear combinations of alip(N, R)
generators (follows from the BCH formula). From section 3 we know that this eigenvalue
property is sufficient for the equalities det= detC = 0, i.e. the squeezed Fock states are
sp(N, R) RIS for all Hermitian quadratures of operators (51). Multimode squeezed Fock
states/ (g)|n) were constructed in the last two papers of [11], whereMhg N, R) operator
U(g) was taken as the evolution operatti(z) of the generalN-dimensional quadratic
guantum system (in coordinate representation the stgtés¢)|n) were expressed as the
product of(g|0) (see equation (47)) and a Hermite polynomialMfvariables). Note that
squeezed Fock states ame(N, R) RIS and nothy RIS and squeezed Glauber CS ane

RIS and notsp(N, R) RIS. Only squeezed vacuum states are simultanecpsly, R) RIS
andhy RIS (ay RIS = Q-RIS).

Recently, attention was paid, in the physical literature, to multimode even and odd CS
[36] |a)+ = Ni(la) | — ), where|a) = D(«)|0) is Glauber multimode CS. We readily
see that thesgx) . are eigenstates of ak;;, equation (51), and therefore are noncorrelated
squared amplitude RIS with equal uncertainties of quadraturds;of It is the set of all
sp(N, R) K;-RIS which is a natural extension of that of multimode even and odd CS
|a)+, incorporating also the multimode squeezed vacuum stéfes v) and Glauber CS
|a). Unlike the even and odd Cf)., the K;;-RIS (being eigenstates of combinations
Ujrajay + vjka}'a,'ﬁ) can exhibit strong squeezing in quadratures;af, and therefore can be
calledmultimode squared amplitude squeezed statemplete analogy to the well known
case of multimode (amplitude) squeezed states [19, 33, 34].

We stress that the set of ap(N, R) RIS, and even the set of thi€,-RIS is much larger
than the set oMp(N, R) CSU(g)|0). The problem can be solved entirely in the one mode
case,N = 1, using the Glauber CS representation, in whick: d/d«, o' = « [30, 31].

The resulting even states take the form (37) with the replacerkeati andn = «?/2, the
normalizability conditions remaining the same as (39). Some particular sets of one-mode
squared amplitude squeezed states are constructed and discussed in [17]. Generalized one-
mode even and odd CR, u, v; £) were first constructed in the second paper of [19] as
even and odd solutions of the eigenvalue equatiarf + va'?)|z, u, v; £) = z|z, u, v; &)

with complex parametens andv. The eigenvalue problem for operatdts+ ¢af)? (¢ € C

was considered in [37].

The RIS, which are not group-related CS, exhibit many physical properties which group
CS lack. One such property is squeezing in the fluctuation of group generators. Squeezing
in the fluctuation ofX,, in a state|y) occurs if|y) is close (by norm form example) to an
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eigenstate ofX,, since the (squared) varianee’X,, = o, of X, vanishes in eigenstates
of X, only [15]. Therefore if in RIS which is eigenstate gf X, all but g, tend to O then
AX, should tend to 0. In group CS with symmetry it is not always possible to let all but
B, to tend to O due to constrain (31) (it is trivially possibleXi, itself has|yyo) as its
eigenstate). In the case of (1, 1) we have explicit solutiong, u, v, w; k), equation (37)
and CS|t; k) and one can verify the above statement: the variancek0fin CS are
greater thark for any z [15], while for example fork = ; the K1—K> IS |z, u, v; ;) With
z=-1,u =+1+x2 v=—x < 0 exhibit strong squeezing ik, (AK, is monotonically
decreasing when: increases). Moreover, one can find IS which exhikit (K,) and
g (p) squeezing (joint amplitude and squared amplitude squeezing) simultaneously. Sub-
Poissonian statistics also occurs in{Su, v, w; ;11). In greater detail, nonclassical properties
of SU(, 1) IS (for k = %1, 231) are discussed (and illustrated by several graphics) in [31].

By means of four boson operatarsh, af, bt one can construct quadratic combinations
which closesu(1, 1) (the representations with Bargman index= (1 + |n, — n|)/2 =
1/2,1, ..., considered in the previous subsection) @r(2) algebra (the Schwinger
realization), which are subalgebras g#(4, R), equation (51) forN = 2. Currently
physical properties of variousu(1, 1) and su(2) SIS of two-mode boson/photon system
are being discussed (see [38—40] and references therein). We note that the result of [40]:
K>—K3 two-mode IS which are nafU (1, 1), group CS can improve the sensitivity in the
interferometric measurements. Several schemes of generation of Si&(1od) or su(2)
operators in two-mode quadratic boson representations were considered recently [38—40].
But so far no scheme for generatiig—K, one-mode SIS has been presented. It seems
natural to generate these SIS from experimentally available Glauber CS or even and odd CS
[8] acting on the latter by the squared amplitude squeeze opeSatow), equation (27).
For this purpose, however, one has to look for a nonunitary evolution process, since here
the squeeze operatSi(u, v) is only isometric [31].

6. Concluding remarks

We have shown that the uncertainty matrix foobservables(, can always be diagonalized
by a linear transformation oX,. For the case of spin-component operators this means
that spin covariances are of a pure coordinate origin and correlated spin states are unitary
equivalent to noncorrelated states. When the uncertainty matrix is positive definite (as is
the case for example of thedeformed multimode boson system with> 0, in particular,
the case of canonical boson systems 1) it can be diagonalized by means of symplectic
transformations. Using the above diagonalization property a new family of uncertainty
relations for positive definite uncertainty matrices is established.

The Robertsom-dimensional relation for the uncertainty matrix, equation (1), is shown
to be efficient at generalizing the basic properties of Glauber coherent states (CS) to an
arbitrary system of observablés,. For an even number of observables this relation is
minimized in a statey) if |y) is an eigenstate of/2 independent complex combinations
of X,. For any (even or odd) the minimization occurs in states which are eigenvectors of
a real combination o¥X,. WhenX, close a semisimple Lie algebra, the set of states which
minimize the Robertson inequality (called here Robertson intelligent states (RIS)), contain
the corresponding group-related CS with symmetry. CS with maximal symmetry are also
contained in RIS for the quadratures of Weyl lowering and raising operators. Thus, it is
the Robertson uncertainty relation that brings together the three ways of generalization of
Glauber CS [3] to the level of observables.
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RIS which are not group-related CS can exhibit interesting physical properties. One such
universal property to be distinguished from CS is the strong squeezing of group generators.
In this way the multimode squared amplitude squeezed states are naturally introduced as
sp(N, R) RIS. Squared amplitude RIS can exhibit both linear and quadratic squeezing as we
have shown in the example &h—K> IS. Such joint squeezing of noncommuting observables
could be useful in optical communications and interferometric measurements since the field
in such squeezed states is better determined—this should be considered elsewhere. The
problem of generating RIS for tweu (1, 1) andsu(2) observables was discussed in [38—

40]. In this connection we note the principle possibility to generate for exakipt&,
squared amplitude IS by means of isometric (nonunitary) evolution operators.
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