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Abstract. The diagonalization of the uncertainty matrix and the minimization of Robertson
inequality for n observables are considered. It is proved that for evenn this relation is
minimized in states which are eigenstates ofn/2 independent complex linear combinations of the
observables. In the case of canonical observables, this eigenvalue condition is also necessary.
Such minimizing states are called Robertson intelligent states (RIS). The group-related coherent
states (CS) with maximal symmetry (for semisimple Lie groups) are a particular case of RIS for
the quadratures of Weyl generators. Explicit constructions of RIS are considered for operators of
su(1, 1), su(2), hN andsp(N,R) algebras. Unlike the group-related CS, RIS can exhibit strong
squeezing of group generators. Multimode squared amplitude squeezed states are naturally
introduced assp(N,R) RIS. It is shown that the uncertainty matrices for quadratures ofq-
deformed boson operatorsaq,j (q > 0) and of anyk power of aj = a1,j are positive definite
and can be diagonalized by symplectic linear transformations.

1. Introduction

Canonical coherent states (CS) [1, 2] in quantum optics and quantum mechanics can be
defined in three equivalent ways: (1) as eigenstates of the non-Hermitian boson (photon)
destruction operatora; (2) as orbits of the oscillator ground state|0〉 under the action of
unitary displacement operatorD(α); (3) as states which minimize the Heisenberg relation
for canonical observablesq = (a+a†)/√2 andp = −i(a−a†)/√2 with equal uncertainties.
Correspondingly, there are three ways of generalizing canonical CS [3]. The second one
is the most general one considered, which consists of constructing orbits of a reference
vectors|ψ0〉 under the action of unitary operators of irreducible representations of a given
Lie group [2, 3] (D(α) realize ray representation of Heisenberg–Weyl groupH1). These
generalized CS are known (and should be called here) as group-related CS [2].

The main aim of this paper is to consider the third way of generalizing (the intelligence
way) the case ofn observables and its relationship with the first two methods. The idea is
to look for a generalized uncertainty relation forn observablesXµ, µ = 1, 2, . . . , n, which
minimization would yield a continuous family of states such that in cases ofXµ being
generators of a Lie group it would include the corresponding group-related CS.

It turns out that the required generic uncertainty relation (UR) forn observables is that
of Robertson [4], equation (1) (see also the review [5] on generalized uncertainty relations).
Here we show that it is minimized in the eigenstates ofn/2 (for evenn) independent complex
linear combinations ofXµ or (for anyn) of at least one real combination. WhenXµ are
quadrature components of Weyl generators of a semisimple Lie group [6] these minimizing
states contain as a subset the corresponding group-related CS with symmetry [2, 3]. Thus,
it is the Robertson relation that naturally connects the above three ways of generalization
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of CS on the level ofn observables. In the case of theN mode electromagnetic field we
get that Robertson UR (RUR) is minimized if and only if the state is an eigenstate ofN

new destruction operatorsa′j = ujkak + vjka†k. For brevity, states which minimize some
uncertainty relation should be called hereintelligent states(IS) (the term IS was introduced
in [7] in the example of spin states which minimize Heisenberg UR). The termcorrelated
[8] is reserved for states with nonvanishing covariances (correlations).

The first step in the first method of CS generalization was made in [9–11] where
eigenstates of complex combinations ofaj and a†j , j = 1, 2, . . . , N , were constructed
and discussed (N = 2 in [9], N = 1 in [10], anyN in [11]). Later [8], it was shown that
eigenstates ofua+va† minimize the Schr̈odinger UR (SUR) [12] forq andp (equation (3)),
the minimizing states being calledcorrelated CS. Those CS are in fact the same [13] as
canonical squeezed states in quantum optics [14]. In [15] it was proved that SUR for
any two observablesX and Y is minimized in eigenstates of their complex combination
λX+ iY (equivalently ofuA+ vA†, A = (X+ iY )/

√
2, λ andu, v are complex numbers).

Eigenstates ofuA + vA† can exhibit strong squeezing inX andY . Schr̈odinger IS (SIS)
for the generatorsK1,K2 of SU(1, 1) were constructed in [15] and shown to combine
the Barut–Girardello CS [16] andSU(1, 1) group-related CS with symmetry [3]. The full
sets of even and odd SIS for quadratures of squared boson destruction operatora2 were
constructed in the second paper of [19] (see also [31, 30]). Eigenstates ofuA + vA† with
real u and v are noncorrelated SIS, that is Heisenberg IS, and the cases ofX, Y being
quadratures ofaa or of the productab of two annihilation operators were considered in
[17].

Another purpose of this paper is to consider the diagonalization problem of the
uncertainty matrix, denoted here byσ . This matrix is of direct physical significance since
its elements are dispersions (variances) and correlations (covariances) of observables.σ is
also important in quantum-state geometry [18]. In the case of canonical operatorsqj , pk
diagonalization ofσ was considered in [19].

The paper is organized as follows. In section 2 we briefly review Robertson relations for
the uncertainty matrixσ for n observablesXµ. In section 3 we consider the diagonalization
of σ by means of linear transformations ofXµ. We note that in any stateσ can be
diagonalized by means of the orthogonal transformation. From this it follows that the spin-
component correlations can be eliminated by coordinate rotation. When the uncertainty
matrix is positive definite (as is the case of 2N quadratures ofk power of boson/photon
annihilation operatorsaj and the case of quadratures ofq-deformed boson operatorsaj,q for
q > 0) it can also be diagonalized by means of symplectic transformation. A new family
of trace class UR (15) is established for positive definite dispersion matrices.

In section 4 we study the minimization ofn-dimensional RUR. In section 5 explicit
examples of RIS are considered, thesu(1, 1) and su(2) RIS being discussed in greater
detail. RIS for generators ofSU(1, 1) in the quadratic bosonic representation can exhibit
linear and quadratic amplitude squeezing (even simultaneously—joint squeezing of two
noncommuting observables).

2. Robertson uncertainty inequalities

For n observables (Hermitian operators)Xµ Robertson [4] (see also [5]) established the
following two uncertainty relations for the dispersion matrixσ ,

detσ > detC (1)

σ11σ22 . . . σnn > detσ (2)
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whereσµν = 〈XµXν + XνXµ〉/2− 〈Xµ〉〈Xν〉 andC is the antisymmetric matrix of mean
commutators,Cµν = −(i/2)〈[Xµ,Xν ]〉. Here〈X〉 is the mean value ofX in quantum state
ρ, which is generally a mixed state. Forn = 2 inequality (1) coincides with SUR (X1 = X,
X2 = Y )

12X12Y − σ 2XY > 1
4|〈[X, Y ]〉|2 (3)

which in turn is reduced to the Heisenberg UR forX and Y when the covariance
σXY = 〈XY + YX〉/2− 〈X〉〈Y 〉 is vanishing (12X ≡ σXX, 12Y ≡ σYY ).

Combining (1) and (2) one obtains

σ11σ22 . . . σnn > detC (4)

which can be treated as a direct extension of Heisenberg UR to the case ofn operators.
The uncertainty matrix (dispersion or correlation matrix)σ = σ(X, ρ), whereX =

(X1, X2, . . . , Xn), is symmetric by construction. From Robertson inequalities (1) and
(2) one can deduce that its determinant is always nonnegative. Indeed, the matrix of
mean commutators is antisymmetric and the determinant of the antisymmetric matrix is
nonnegative [20]. Thereby in any stateρ we have detC > 0. detC vanishes identically if
the number of operatorsn is odd.

Diagonal elements ofσ are the variances ofXµ. The problem of reducing (squeezing) of
variances of quantum observables is important in physics (in quantum optics [14]) of precise
measurements and telecommunications. The nondiagonal elements are the covariances of
Xµ andXν and describeXµ–Xν correlations. The uncertainty matrix in pure state|ψ0〉 can
be used as a metric tensor in the manifold of generalized Glauber CSD(α)|ψ0〉 [18]. In view
of these dynamical and geometrical properties ofσ it is desirable to study the problem of
its diagonalization (which is equivalent to the problem of minimizing the second Robertson
relation (2)). Diagonalization ofσ in the case of canonical observablespj = Xj , qj = XN+j ,
j = 1, 2, . . . , N , was recently considered in [19]: in any state it can be diagonalized by
means of linear canonical transformations. In section 3 we consider this problem in more
general cases. The minimization of (1) for two observablesX1 andX2 (i.e. of SUR (3))
has been shown [15] to occur in the eigenstates of their complex (in particular real) linear
combinations only. In section 4 we extend this result to arbitraryn.

3. Diagonalization of uncertainty matrix of n observables

In this section we consider the diagonalization of the uncertainty matrixσ(X, ρ) by means
of linear transformations ofn operatorsXµ (summation over repeated indices),

Xµ→ X′µ = λµνXν (5)

whereλµν are real numbers (in order forX′µ to be Hermitian operators again).
We first note the transformation property ofσ under transformation (5). Defining the

new matrixσ ′ asσ ′ = σ(X ′, ρ) we easily obtain

σ ′ = 3σ3T (6)

where we introduce then vectorX ′ = (X′1, . . . , X
′
n) and n × n matrix 3 = {λµν}, its

transpose being denoted as3T . Thus, the two dispersion matrices are congruent via the
transformation matrix3. We suppose that transformation (5) is invertable and set det3 = 1.
In matrix form equation (5) is rewritten asX ′ = 3X.

We note several general properties ofσ , some of which are immediate consequences of
its symmetricity and the transformation law (6). First, we note the invariant quantities: (a)
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detσ = detσ ′ for any3 ∈ SL(n,C); (b) Trσ k = Tr σ ′k, k = 1, 2, . . ., for orthogonal3;
(c) Tr(σJ )k = Tr(σ ′J )k for symplectic transformations (n = 2N ),

3J3T = J J =
(

0 1N
−1N 0

)
. (7)

The last two invariants are particular cases of quite general relations, Tr(σ ′g)k = Tr(σg)k

which hold for3 satisfying3T g3 = g with any fixed matrixg (in the aboveg = 1 and
g = J ).

Next we note thatσ (being symmetric) can always be diagonalized by means of
orthogonal3 (33T = 1) [20] in any state, i.e.σ ′ is diagonal for some orthogonal3.
In the case of spin (or angular momentum) operators, we obtain from this property that
spin-component correlations can be considered as pure coordinate effects. Another general
property ofσ is its nonnegativity,σ > 0. To prove this last property we diagonalizeσ by
means of the orthogonal matrix3. The new operatorsX′µ, equation (5), are again Hermitian
and therefore all the diagonal elements of the matrixσ ′ are nonnegative. Thereforeσ > 0
in any stateρ.

Further properties of the uncertainty matrix can be established when the set of operators
Xµ possess some additional properties. For example, ifσ is positive definite,σ > 0, then
it can be diagonalized by means ofsymplectic3 [21]. Therefore it is important to know
when the uncertainty matrix is strictly positive. The value of detC > 0 turned out to play
an important role. Note that detσ > 0 stems fromσ > 0 and detσ = 0 means thatσ is
not strictly positive.

Proposition 1.detσ(X, ρ) = 0 in pure statesρ = |ψ〉〈ψ | iff |ψ〉 is an eigenstate of a real
combinationλνXν of Xν .

Proof. (a) Necessity. Let detσ(X, ρ) = 0. Then orthogonal3 exists such thatσ ′ is
diagonal. We have 0= detσ = detσ ′ = σ ′11σ

′
22 . . . σ

′
nn, wherefrom at least for oneν one

hasσ ′νν = 0. The latter is possible in pure statesρ = |ψ〉〈ψ | if and only if X′ν |ψ〉 = x ′ν |ψ〉.
(b) Sufficiency. Let(λX)|ψ〉 = x ′|ψ〉, λX ≡ λνXν . Then we can always construct the
nondegenerate matrix3 with first row (λ1, λ2, . . . , λn) and consider the uncertainty matrix
σ ′ = σ(3X;ψ). This σ ′ is with a vanishing determinant since the first column of it is
zero (as a consequence of(λX)|ψ〉 = x ′|ψ〉). But 0= detσ ′ = (det3)2 detσ , therefore
detσ = 0.

In view of this proposition and equation (1) one has the following.

Corollary 1. If detC(X, ψ) > 0 then|ψ〉 cannot be a normalizable eigenstate of any real
combinationλνXν .

If detC(X;ψ) > 0 in any state then neitherXµ nor any real combinationλνXν can
be diagonalized in Hilbert space of statesH, that is the spectrum ofXµ and λνXν are
continuous. Here is a class of 2N operators for which detC > 0 and thereforeσ is positive
in any state.

Proposition 2.If Xµ, µ = 1, 2, . . . ,2N obey the commutation relations

[Xj,XN+k] = δjk[Xj,XN+j ] [Xj,Xk] = 0= [XN+j , XN+k] (8)

where −i[Xj,XN+j ] are positive definite operators, then detC(X; ρ) > 0 and the
uncertainty matrixσ(X; ρ) is positive definite.
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Proof. By direct calculations we obtain

detC = ( 1
2)

2N 〈(−i)[X1, Y1]〉2〈(−i)[X2, Y2]〉2 . . . 〈(−i)[XN, YN ]〉2 (9)

whereYj ≡ XN+j , j = 1, 2, . . . , N . Since every factor in (9) is positive one has detC > 0.
From corollary 1 and the diagonalization ofσ by orthogonal3 we derive that detC > 0 is
a sufficient condition forσ to be positive definite. �

We can point out a family of the boson system (e.g.N mode electromagnetic field)
observables which obey the commutation relations (8). Those are the quadrature components
of powerk of photon (boson) destruction operatorsaj , defined here as

X
(k)
j =

1√
2k
(akj + ak†j ) X

(k)
N+j =

−i√
2k
(akj − ak†j ) ≡ Yj . (10)

Relations (8) and the positivity of−i[X(k)j , Y
(k)
j ] = (1/k)[ak, ak†] can be checked by direct

calculations. As a result, the quadrature components ofak are continuous observables,
their uncertainty matrix is positive definite and can be diagonalized by means of symplectic
3. For k = 1, operators (10) are the canonical pairsqj , pj , therefore their uncertainty
matrix can be diagonalized by means of linear canonical transformations, corresponding
to symplectic3. The procedure for diagonalizing a positive definite matrix by means of
symplectic3 is described in [21] and in the first paper of [19]. Canonical transformations
with time-dependent3(t) can be used to diagonalize any quadratic Hamiltonian. For an
oscillator with varying mass and/or frequency this was done by Seleznyova [22].

Positive definite uncertainty matrices also exist inq-deformed boson systems. Aq-
deformed oscillator was introduced in [23]. The deformed lowering and raising operators
aq anda†q obey the commutation relation

[aq, a
†
q ] = [Nq + 1]− [Nq ] [N ] ≡ qN − q−N

q − q−1
(11)

whereNq is a number operator whose eigenstates are|n〉q = ([n]!)−1/2a
†n
q |0〉q : Nq |n〉q =

n|n〉q , aq |0〉q = 0, [n]! = [n][n− 1] . . . [1]. At q = 1, aq, a
†
q coincide with ordinary boson

operatorsa, a†. Now we note that the commutator [aq, a
†
q ] is positive definite forq > 0

as one can easily verify by using (11). From the commutation relations forn q-deformed
oscillators [24]

[aq,j , aq,k] = 0 [aq,j , a
†
q,k] = δjk[aq,j , a†q,j ]

[Nq,j , aq,k] = −δjkaq,k [Nq,j , a
†
q,k] = δjka†q,j

(12)

it follows that the set of quadrature components ofaq,j obey the requirements of
proposition 2 forq > 0. Therefore the uncertainty matrixσ(Xq; ρ) is positive definite
in any state forq > 0.

For the positive definite uncertainty matrix of 2N observables satisfying (8) one can
establish a set of new uncertainty relations. For this purpose consider the invariant quantities
Tr(iσJ )2k, k = 1, 2, . . .. Let σ ′ be a diagonal matrix which is symplectically congruent to
σ . Then we have

Tr(iσJ )2k = Tr(iσ ′J )2k = 2
N∑
j

[σ ′j,j σ
′
N+j,N+j ]

k. (13)
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In view of σ > 0, every termσ ′j,j σ
′
N+j,N+j in (13) is nonvanishing and positive. We can

apply the Heisenberg relation forσ ′j,j σ
′
N+j,N+j and write the set of inequalities

Tr(iσJ )2k > 2
N∑
j

| 12〈[X′j , X′N+j ]〉|k. (14)

In the aboveX′µ = 3µν(ρ)Xν and3(ρ) is the diagonalizing symplectic matrix for the
stateρ. For every state we can in principle find the minimal valuec2

0(ρ) of theN terms∣∣∣〈[X′j , X′N+j ]〉∣∣∣ and therefore rewrite (14) in a more compact form

Tr(iσJ )2k > N

22k−1
c2k

0 k = 1, 2, . . . . (15)

In the particular case of canonical variablesXj = pj , XN+j = qj in any state the products
σ ′j,j σ

′
N+j,N+j are greater than or equal to14 (this is the value ofσ ′j,j σ

′
N+j,N+j in Glauber

CS for modej , h̄ = 1), that isc2
0 > 1. Thus, for canonical variables the above UR read

(Q = (p1, . . . , pN, q1, . . . , qN ))

Tr[iσ(Q, ρ)J ]2k > N

22k−1
. (16)

The latter inequalities for the case ofσ(Q, ρ) (apart from the factor i) were recently obtained
by Sudarshanet al [19]. For N = 1 andk = 1 inequality (16) recovers the Schrödinger
relation (3).

The above-considered diagonalization of the uncertainty matrix ofn Hermitian operators
by means of transformations of operatorsXµ→ X′µ should be referred to here as first-kind
diagonalizations. The stateρ here is kept the same. This diagonalization is always possible
as we have shown. But it is also of interest to know whenσ can be diagonalized by
state transformation, keeping observables the same. That is for givenXµ and stateρ find
the new stateρ ′ so that the new matrixσ ′′ ≡ σ(X, ρ ′) is diagonal. We shall call this
second-kind diagonalization. Evidently, both diagonalizations coincide (i.e.σ ′ = σ ′′) when
transformation (5) is generated by some unitary operatorU(3),

X′µ = λµνXν = U †(3)XµU(3). (17)

Such is the case for example of uncertainty matrixσ(Q, ρ) of canonical operatorspj ≡ Qj
andqj ≡ QN+j when the diagonalizing3 is symplectic. ThenU(3) is a representation of
the groupSp(N,R) [6] (more precisely ofMp(N,R) = Sp(N,R)) and thus any pure or
mixed canonical correlated state is unitary equivalent to the noncorrelated state. In the case
of N = 1 we have an extra diagonalizing property: in view of the fact that the squared
boson operatorsa2, a†2, a†a close thesu(1, 1) algebra, equation (52) (su(1, 1) ∼ sp(1, R))
we get that in the one-mode field case the quadratic amplitude dispersion matrix is also
diagonalizable by unitaryMp(1, R) state transformation. Property (17) also occurs in
the cases whenXµ close orthogonal algebraso(n, R). Then the diagonalizing orthogonal
transformation (5) is generated by unitaryU(3) ∈ SO(n,R). In the example of
so(3, R) ∼ su(2) this means (recall that ifJk are spin operators, [Jk, Jj ] = ih̄εkjlJl , and3
is orthogonal then [J ′k, J

′
j ] = ih̄εkjlJ ′l ) that spin-component correlations (covariances) in any

state can always be eliminated by means of coordinate rotation (first-kind diagonalization)
and by state transformation with unitary operatorU(3) (second-kind diagonalization). In
other words spin-component correlation is a pure coordinate effect and any spin-correlated
state is unitary equivalent to a noncorrelated one.
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4. Minimization of Robertson uncertainty inequality detσ > detC

One general sufficient condition for the minimization of Robertson inequality (1) for arbitrary
observablesXµ, µ = 1, 2, . . . , n, follows from proposition 1: the equality in (1) holds in
the eigenstates of at least one ofXµ since in such a case both matricesσ andC have at
least one vanishing column and then detσ = detC = 0. In view of the fact thatσ can
always be digonalized by means of orthogonal3 (second immediate property in section 2)
the minimization of both Robertson relations for anyn also occurs in the eigenstates of
some ofX′µ = λµνXν .

In the case of oddn the above sufficient condition for the minimization of (1) is also a
necessary one. Inequality (1) is minimized in a state|ψ〉 if and only if |ψ〉 is the eigenstate
of a real combinationλνXν of observablesXν . The proof follows from proposition 1 and
the property of the determinant of antisymmetric matrices of an odd dimension: for oddn

detC of antisymmetric matrixC is vanishing identically in any state.
detC can only be greater than 0 for evenn. For an even number of operatorsXµ we

establish the following sufficient condition.

Proposition 3.The equality in the RUR (1) for 2N Hermitian operatorsXµ holds in the
eigenstates|ψ〉 of N independent complex linear combinations ofXµ.

Proof. Let X′µ = λµνXν ≡ X′µ(3) be some linear transformation which preserves
the hermiticity, i.e.λµν are real parameters. We introduceN non-Hermitian operators
Aj = Xj + iXN+j and constructN independent complex combinations of allXν in the
form,

A′j = X′j + iX′N+j = ujkAk + vjkA†k (18)

whereujk andvjk are new complex parameters which are simply expressed in terms ofλµν
(j, k = 1, 2, . . . , N). Now let |ψ〉 be eigenstate of allA′j ,

A′j |ψ〉 = zj |ψ〉 j = 1, 2, . . . , N (19)

zj being the eigenvalue. It is natural to denote the solutions of (19) as|z, u, v〉 or
equivalently as|z,3〉, whereu, v areN ×N matrices and3 is 2N × 2N .

The scheme of the proof is to express both matricesσ(X, ψ) and C(X, ψ) in
terms of matricesσ(B′, ψ) and C(B′, ψ) and to compare their determinants. Here
B = (A1, A2, . . . , AN,A

†
1, A

†
2, . . . , A

†
N) ≡ (A,A†) andB′ = (A′,A′†). First we relateX

to B,

X = bB b = 1

2

(
1N 1N
i1N −i1N

)
(20)

where 1N is N × N unit matrix. We introduce 2N × 2N transformation matrixV , which
relatesB andB′,

B′ = VB V =
(
u v

v∗ u∗

)
(21)

whereu andv areN ×N matrices of transformation (18). We consider the new operators
A′j independent (as well as the old onesAj ), therefore matrixV is supposed to be invertable,
that is detV 6= 0. Using the above two linear transformations and the definition ofσ we
obtain

σ(X, ψ) = bV −1σ(A′, ψ)(V −1)T bT (22)
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and similarly

C(X, ψ) = bV −1C(B′, ψ)(V −1)T bT . (23)

Next, using the eigenvalue equations (19) we can prove the equality

detσ(B′, ψ) = detC(B′, ψ) (24)

which in view of (22) and (23) (and the nondegeneracy ofb andV , detb = (−i/2)N ) leads
to the desired equality in the RUR (1),

detσ(X, ψ) = detC(X, ψ). (25)

The proof of auxiliary equality (24) can be carried out by direct calculations: one has

σjk(B
′, ψ) = 0= Cjk(B′, ψ)

σN+j,N+k(B′, ψ) = 0= CN+j,N+k(B′, ψ)
σj,N+k(B′, ψ) = iCj,N+k(B′, ψ)
σN+j,k(B′, ψ) = −iCN+j,k(B′, ψ)

(26)

which manifestly ensure (24). Thus, the states which satisfy equation (19) minimize
inequality (1).

States which minimize RUR (1) for observables(X1, X2, . . . , Xn) ≡ X should be
called Robertson intelligent statesfor X (briefly X-RIS). Equivalent terms could be
Robertson minimum uncertainty states or Robertson correlated states, following for example
[5, 8, 13]. However, we reserve the term correlated for states with nonvanishing correlations
(covariances) only. In the case of evenn, in view of (19) and (18), RIS should be denoted as
|z, u, v〉 or |z,3〉. Forn = 2 relation (1) coincides with the Schrödinger one, equation (3),
and RIS are in fact SIS. For two observables condition (19) is necessary and sufficient [15]
to obtain the equality in SUR.

Following the analogy to the known case of canonical observablespj andqj one can
introduce the squeeze operator [3, 14, 33] for arbitrary observables (generalized squeeze
operator) S(u, v) as an operator which is a map from noncorrelated RIS with equal
uncertainties for all pairsXj and Yj = XN+j (those RIS minimize Heisenberg relation
for 2N operators (4)) to correlated RIS (RIS with nonvanishing covariances and nonequal
variances). Noncorrelated RIS with equal uncertainties forXj and Yj are obtained when
ujk = δjk andvjk = 0 in |z, u, v〉.

S(u, v) : |z, u, v〉 = S(u, v)|z〉 (27)

where |z〉 = |z, u = 1, v = 0〉. |z〉 are eigenstates of allAj , j = 1, 2, . . . , N . For
two arbitrary observables the operatorS(u, v) was introduced in [15]. This definition is
of importance for the generation of RIS|z, u, v〉 from |z〉 when the states|z〉 are known
and available. IS|z〉 with equal uncertainty for two observablesX, Y are constructed, in
different notations, in a number of cases [1, 8, 16, 25–27]. It is interesting to note that for
certain systems the squeeze operatorS(u, v) may exist as an isometric (not unitary) operator.
Such is the case ofS(u, v) for the quadratures of squared boson annihilation operatora2,
considered in [31]. IfS is isometric then its generatorH (defined byS = exp(iH)) is
symmetric (not Hermitian= selfadjoint) operator and can be considered as a generalized
observable [28]. In such cases representingS = exp(itH) (t being real parameter, the time)
we see from (27) that RIS (forn = 2 in fact SIS)|z, u, v〉 can be generated from states
with equal uncertainties|z〉 in a process of nonunitary evolution governed by symmetric
HamiltonianH . Symmetric but not selfadjoint is for example the particle momentum on a
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half line and the Hamiltonian of a particle with different mass parameters inX, Y andZ
directions (moving in a crystal) [28].

Now a natural question of the existence of RIS arises. We have a positive answer to
this question for a broad class of observablesXµ: RIS exists for the operators of Hermitian
representations of semisimple Lie algebras in Hilbert spaceH and for representations
of solvable algebrasL in finite-dimensionalH. RIS may exist for infinite-dimensional
representations of certain solvable algebras. The existence of RIS for any finite-dimensional
representation of a solvable Lie algebraL stems from the theorem [29] that any such
representation possess at least one weight (i.e. a vector exists, which is the eigenvector of
all elements ofL).

5. Examples of RIS

5.1. RIS for semisimple Lie algebras

First we note that for any Lie groupG the group related CS [2, 3]|ψ(g)〉 = U(g)|ψ0〉
with |ψ0〉 being eigenvector of at least one generatorXµ (these are CS with symmetry)
universally are RIS for the generators ofG. Indeed,U(g)|ψ0〉 is evidently an eigenstate
of Hermitian operatorU(g)XµU †(g) (U(g) is a unitary representation ofG). Then we can
apply proposition 1 and get detσ(X;ψ(g)) = 0. Here detC also vanishes identically with
respect tog ∈ G, i.e. detσ(X;ψ(g)) = detC(X;ψ(g)) = 0. If G is semisimple then
Hermitian generatorsHl from Cartan subalgebra always have normalizable eigenvectors
|ψ0〉 [6]. Therefore CS|ψ(g)〉 with these|ψ0〉 as reference vectors are RIS for all group
generators (with the trivial minimization: detσ = detC = 0 identically with respect to
g ∈ G).

We shall now prove that CS|ψ(g)〉 with maximal symmetry are RIS for the quadrature
components of Weyl lowering operatorsE−k with the property detσ > 0. The proof
consists of an application of proposition 3. The number of quadrature componentsXk, Yk
of all E−k is even, denoted by 2nw, where nw is the number of Weyl operatorsE−k:
E−k = Xk − iXnw+k ≡ Xk − iYk, k = 1, 2, . . . , nw. We shall prove that equation (19)
(the sufficient condition for RIS) is satisfied by CS|ψ(g)〉. As operatorsAj we take here
E−k and asA′j we have to take linear combinations of Weyl lowering and raising operators
ujkE−k + vjkEk, j, k = 1, 2, . . . , nw and then consider the eigenvalue equation

(ujkE−k + vjkEk)|z, u, v〉 = zj |z, u, v〉. (28)

Consider the action ofujkE−k + vjkEk on the state|ψ(g)〉. One has (summation over
repeated indices,Ek = E†−k, Hl = H †l )

(ujkE−k + vjkEk)|ψ(g)〉 = (ujkE−k + vjkEk)U(g)|ψ0〉
= U(g)U−1(g)(ujkE−k + vjkEk)U(g)|ψ0〉
= U(g)[(ujkũki + vjkṽ∗ki)E−i + (ujkṽki + vjkũ∗ki)Ei
+(ujkw̃kl + vjkw̃kl)Hl ]|ψ0〉. (29)

In the above we have applied the BCH formula to the transformationsU−1EkU (k, j, i =
1, 2, . . . , nw, l, m = 1, 2, . . . , nc, nc being the dimension of Cartan subalgebra)

U−1(g)E−kU(g) = ũkiE−i + ṽkiEi + w̃klHl. (30)

Taking into account thatE−i |ψ0〉 = 0 andHl|ψ0〉 = hl|ψ0〉 we see that|ψ(g)〉 should be
an eigenstate of allA′j if the nw × nw matricesu, v, ũ and ṽ satisfy the equation

uṽ + vũ∗ = 0. (31)
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In the last equatioñu = ũ(g) and ṽ = ṽ(g) should be treated as known for a given
Lie group representationU(g). Moreover, the matrixũ is nondegenerate. Therefore we
can always solve equation (31),v = −uṽ(g)ũ∗−1(g) and get|ψ(g)〉 as an eigenstate of
A′j = ujkE−k + vjkEk,

(ujkE−k + vjkEk)|ψ(g)〉 = zj |ψ(g)〉 (32)

with eigenvalueszj = (ujkw̃kl + vjkw̃kl)hl . In view of (32), the group-related CS with
maximal symmetry|ψ(g)〉 can be parametrized as RIS for 2nw components of Weyl
generators:|ψ(g)〉 = |z, u, v〉 whereu andv arenw × nw matrices.

Thus, we have demonstrated that states from unitary (in particular unitary and
irreducible) orbits of extremal weight vectors of semisimple Lie algebras are RIS for all
basis operatorsXµ and for the quadraturesXk, Yk = Xnw+k of Weyl operatorsE−k as well.
As far as we know, this intelligence property of the group-related CS has not been noted
yet in the literature.

We stress that RIS for quadrature components of Weyl generatorsE−k are more general
than the group-related CS with maximal symmetry: states|ψ(g)〉 are only a part of the set
of solutions of eigenvalue equation (28), corresponding to constrain (31) on the parameters
ujk andvjk. In the example ofsu(1, 1) and su(2) (nw = 1, nc = 1) this was analysed by
explicit constructions of SIS|z, u, v; k〉 in [15].

It is worth noting that propositions 1 and 3 can be applied to any subset of the operators
of a given Lie algebraL. Therefore it makes sense to consider the eigenvalue problem for
general element of the complexified algebraLC ,

(βνXν)|ψ〉 = z|ψ〉 (33)

whereXν (ν = 1, . . . , n) are basis operators ofL andβν are complex parameters. Taking
specific constrains on the complex parametersβν one can get various subset of RIS for less
thann algebra operators, in particular variousXj–Yk SIS. The property of group-related CS
to be part of the set of eigenstates of complex linear combinations of all algebra operators
was noted in [30, 31]. States that satisfy (33) could be called algebraic CS [31] or algebra
eigenstates [30].

5.2. Explicit solutions for su(1, 1) and su(2) RIS

First consider thesu(1, 1) case. The basis elements ofsu(1, 1) are the three operatorsKµ,
µ = 1, 2, 3, which obey the relations

[K1,K2] = −iK3 [K2,K3] = iK1 [K3,K1] = iK2. (34)

The Casimir operator isC2 = K2
3 − K2

2 − K2
1 = k(k − 1) and Weyl lowering and raising

operators areK∓ = K1 ∓ iK2. According to the previous discussion, RIS for all three
algebra operators and for any pairKj–Kk are contained in the set of eigenstates of general
element of the algebra. Therefore one has to consider the eigenvalue equation for the general
element ofsuC(1, 1),

(uK− + vK+ + wK3)|z, u, v,w; k〉 = z|z, u, v,w; k〉 (35)

whereu, v,w are complex parameters, simply related toβν introduced in (33). This equation
can be solved [31, 30] using the Barut–Girardello CS representation (BG representation)
[16] or the SU(1, 1) group-related CS representation [2, 3]. The solution can be carried
out for su(1, 1) representations with Bargman indexk = 1

4,
3
4 and for the discrete series

k = 1
2, 1, 3

2, . . . (particular cases ofv = 0 = w andw = 0 were solved in [16, 15]. The
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Barut–Girardello CS (BG CS)|η; k〉 are eigenstates ofK−: K−|η; k〉 = η|η; k〉. In this
representation

K+ = η K− = 2k
d

dη
+ η d2

dη2
K3 = k + η d

dη
(36)

and states|ψ〉 are represented by analytic functions8(η) which up to a certain common
factor f (|η|) are proportional to〈k; η∗|ψ〉. Orthonormalized eigenstates|m; k〉 of K3 are
represented by monomialsηm [0(k)/(m!0(m + k))]1/2. For u 6= 0 the required analytic
solution of (35) is [31]

8z(η; u, v,w) = N(z, u, v,w)exp(cη)M(a, b, c1η) (37)

where N(z, u, v,w) is a normalization constant,M(a, b, η) is the Kummer function
(confluent hypergeometric function1F1(a, b; η)) [32], parametersa, b, c andc1 are

a = k + z√
w2− 4uv

b = 2k

c = − 1

2u

(
w +

√
w2− 4uv

)
c1 = 1

u

√
w2− 4uv

(38)

and the normalizability conditions take the form

1

2|u|
∣∣∣w −√w2− 4uv

∣∣∣ < 1 or
1

2|u|
∣∣∣w +√w2− 4uv

∣∣∣ < 1. (39)

When inequalities (39) are broken down the functions8z(η; u, v,w) are still solutions of
equation (35) and could be considered as nonnormalizable eigenstates. In the case ofu = 0
in equation (35), we have (in view of (36)) a first-order equation to solve [31]. It turned out
that the solutions for this case could be obtained from8z(η; u, v,w; k) taking appropriate
limits in it. One can check that conditions (39) can be satisfied by realw andv = u∗ when
the operatoruK− + vK+ +wK3 becomes Hermitian. Then the algebraic states|z, u, u∗, w〉
(w = w∗) are RIS for the three observablesK1,K2 andK3. RIS for the nonsquare integrable
representations corresponding tok = 1

2,
3
4 are considered in section 5.3.

Various known states are contained in the large family ofsu(1, 1) states|z, u, v,w; k〉
[31]. In particular, whenw = 0 we get the SIS|z, u, v; k〉 for the noncompact generators
K1 andK2, which in turn atz = −k√−uv [15] recover the family ofSU(1, 1) group CS
|τ ; k〉 (the squeezed vacuum states [3]),τ = √−v/u, |τ | < 1. In view of the positivity
of the commutator i[K1,K2] = [K−,K+]/2 the uncertainty matrixσ(K1,K2; ρ) is positive
definite and therefore possesses the resulting properties, described in section 2. In IS
|z, u, v; k〉 the matrix elements ofσ are

σ11 = 1

2

|u− v|2
|u|2− |v|2 〈K3〉 σ22 = 1

2

|u+ v|2
|u|2− |v|2 〈K3〉 σ12 = Im(u∗v)

|u|2− |v|2 〈K3〉 (40)

satisfying detσ = detC = 〈K3〉2/4. The K1–K3 and K2–K3 IS are obtained from
|z, u, v,w; k〉 whenv = u andv = −u respectively.

The case ofsu(2), RIS (i.e. spin RIS) can be treated in a similar manner by using the
representation ofSU(2) group related CS|ζ ; j〉 in which [3]

J− = −ζ 2 d

dζ
+ 2jζ J− = d

dζ
J3 = ζ d

dζ
− j. (41)

Here j = 1
2, 1, 3

2, . . ., [J−, J+] = −2J3, [J3, J±] = ±J± (J± = J1 ± iJ2) and
J 2 = J 2

1 + J 2
2 + J 2

3 = j (j + 1). The required eigenvalue problem

(βνJν)|z,β; j〉 = z|z,β; j〉 (42)
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whereβ = (β1, β2, β3) (βν are complex parameters) was solved by Brif [30]. In the case
of b2 ≡ ββ 6= 0 6= β1− iβ2 ≡ β− the solution is [30]

8z(ζ ;β, j) = N0

(
ζ − β3− b

β−

)j+z/b(
ζ − β3+ b

β−

)j−z/b
(43)

with the normalizability conditionz = mb, m = −j,−j +1, . . . , j −1, j . As we expected,
thesesu(2) RIS contain the set of standardSU(2) CS with maximal symmetry|ζ ′; j〉 and
this occurs whenm = ±j with ζ ′ = −β−(ζ3∓b)−1 [30]. At β3 = 0 thesu(2) RIS coincide
with the Schr̈odingerJ1–J2 IS considered in [15].

For thesu(2) observablesJν (the spin components) it is important to note that the spin-
component uncertainty matrixσ(J; ρ) in any state can be diagonalized by means of an
orthogonal linear transformation ofJν . The latter can be induced by rotating coordinates in
R3 sincesu(2) ∼ so(3). Therefore we deduce that spin-component correlations are of a pure
coordinate nature—they can be eliminated in any state by rotations of the reference frame.
Here one can also perform second-kind diagonalization ofσ , keepingJν and transforming
the stateρ by an unitary operatorU(g) of SU(2) ∼ SO(3). Thus, correlated spin RIS are
unitarily equivalent to noncorrelated spin RIS.

5.3. RIS of the multimode boson systems

In this section we first considern = 2N canonical operatorspj and qj , j = 1, 2, . . . , N ,
which are quadrature components ofN boson/photon destruction (creation) operators
aj = (qj + ipj )/

√
2 (a†j = (qj − ipj )/

√
2): [qj , pk] = iδjk. Here for concreteness we put

Xν ≡ Qν , Qj = pj , QN+j = qj andAj = qj + ipj = aj
√

2. The set ofQµ and the unity
operator close the Heisenberg algebrahN , which is nilpotent (therefore nonsemisimple). So
RIS for canonical observablesQµ arehN RIS (to also be called the multimode amplitude
RIS). According to proposition 3, eigenstates|α, u, v〉 ≡ |α,3〉, α = (α1, α2, . . . , αN), of
a′j ,

a′j = ujkak + vjka†jk = 1
2[(λq)jkqk + (λp)jkpk] (44)

with anyu andv are RIS forQµ,

a′j |α; u, v〉 = αj |α; u, v〉 j = 1, 2, . . . , N. (45)

Hereu = (λq − iλp)/2, v = (λq + iλp)/2 andu, v, λq andλp areN ×N complex matrices.
TheN ×N matricesλq andλp are related to the transformation matrix3 in (5) (which is
now rewritten asQ′µ = λµνQν) as follows

3 =
(
λ1 λ2

λ3 λ4

)
λp = λ3+ iλ1 λq = iλ2+ λ4. (46)

If one imposes the symplectic conditions3J3T = J on 3, the operatorsa′j become
new annihilation operators, i.e. the linear transformation (5) becomes a canonical one.
With this conditionsQ-RIS are unitary equivalent (with the methaplectic operatorU(3))
to eigenstates ofaj , i.e. to the canonical multimode CS|α〉. In [11] states|α,3(t)〉
were constructed explicitly as a solution|α; t〉 of the time-dependent Schrödinger equation
for general quadratic, possibly time-dependent, HamiltonianH = Bµν(t)QµQν (plus
linear terms as well). In terms of parameter matricesλq and λp these canonical RIS
|α,3〉 = |α, u, v〉 in the coordinate representation read (1 = 0 in equations (17) of the
third paper of [11])

〈q|α;3〉 = πN/4 exp(γ + ν̃q − 1
2qµ̃q) (47)
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whereµ̃ is N ×N matrix, µ̃ = iλ−1
p λq , ν̃ is N vector,ν̃ = (1/√2)(λ†q − λ−1

p λqλ
†
p)α and

γ = −1

2
|α|2+ i

4
α(λ∗pλ

−1
p λqλ

†
p − λ∗qλ†p)α.

At 3 = 1 the RIS (47) coincide with canonical CS|α〉 in the coordinate representation. The
multimode states (47) in different parametrizations were also considered in several papers
under the names multimode squeezed states [33] or multimode/polymode correlated states
[19, 34, 35] or Gaussian pure states [35].

It is worth noting that for canonical RIS the condition (45)∼ (19) is not only sufficient,
but also necessary, i.e. allQ-RIS are eigenstates ofa′j = ujkak + vjka†jk for someujk
and vjk. This can be proved by using the diagonalization ofσ(Q, ρ). Indeed, let
σ ′ = σ(Q′, ρ) = σ(Q, ρ ′) be diagonal. Hereρ ′ = U(3)ρU †(3), whereU is the
methaplectic unitary operator. Since the mean commutator matrixC is now constant,
detC = 4−N the equality in RUR is detσ = detσ ′ = ∏N

j σ
′
jj σ
′
N+j,N+j = 4−N. Since for

every j the productσ ′jj σ
′
N+j,N+j is greater than or equal to14 we obtain that all products

should be equal to1
4. But this is only possible iffρ is a pure multimode CS for new

variablesQ′, that isρ is pure state, methaplectically equivalent to multimode CS for old
variablesQ, ρ = U(3)|α〉〈α|U †(3).

Consider briefly the uncertainty matrix of canonical observablesσ(Q, ρ). SinceQµ

satisfy the requirements of proposition 2 theσ(Q, ρ) is positive definite. Therefore it can
be diagonalized by means of linear canonical transformation in any stateρ and it obeys
inequalities (16). InQ-RIS |α,3〉 the dispersion matrixσ(Q;α,3) has further properties.
The main one is thatσ(Q;α,3) is symplectic itself. Indeed we have

σ(Q;α,3) = σ(Q′;α, 1) = 3σ(Q;α, 1)3T (48)

whereσ(Q;α, 1) is the uncertainty matrix in multimode canonical CS|α〉. The latter is
evidently proportional to the unity,σ(Q;α, 1) = 1

2 and therefore if3 is symplectic then
2σ(Q;α,3) is also symplectic. We expressσ in terms ofN×N uncertainty matricesσpp,
σqq , σqp andσpq = σTqp

σ (Q) =
(
σpp σpq
σqp σqq

)
(49)

and write the symplectic properties ofσ(Q;α,3) in N ×N matrix form,

σppσqp − σpgσpp = 0= σqpσqq − σqqσpq σppσqq − σ 2
pq = 1

4. (50)

ForN = 1 the last equality is just the equality in the Schrödinger relation (3), the first two
being satisfied identically in any state.

For boson systems it is of interest to consider observables which are quadratic
combinations of creation and annihilation operatorsa

†
j and ak (or equivalently ofpj and

qk). Quadratic combinations

Kjk = 1
2ajak K

†
jk = 1

2a
†
ka
†
j K

(3)
jk = 1

4(a
†
j ak + a†kaj ) (51)

close the simple noncompact algebrasp(N,R) [6], the noncompact elements being spanned
by lowering and raising operatorsKjk andK†jk. In the one-mode casesp(1, R) ∼ su(1, 1)
and

1
2a

2 = K− 1
2a
†2 = K+ 1

4(2a
†a + 1) = K3. (52)

Operators (51) are generators of the methapletic groupMp(N,R), which covers the
Sp(N,R). sp(N,R) RIS in representation (51) should be called the multimode squared
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amplitude RIS. RIS for the quadraturesXjk andYjk of Kjk, Kjk = Xjk + iYjk (shortlyKjk-
RIS), are eigenstates ofN × N complex combinations of lowering and raising operators
Kjk and K†jk and according to our general result they contain group-relatedMp(N,R)

CS with maximal symmetry,|ψ(g)〉 = U(g)|0〉, U(g) ∈ Mp(N,R), the extremal vector
being the multimode boson vacuum|0〉 (these CS coincide with multimode squeezed
vacuum states [19, 33, 34]). On the other hand,Mp(N,R) CS are annihilated by all
a′j = U(g)ajU

−1(g) = ujkak + vjka†k. Hereafter we obtain the property thatMp(N,R)
CS with maximal symmetry are simultaneouslyhN and sp(N,R) RIS (i.e. amplitude and
squared amplitude multimode RIS, double IS). In the coordinate representation and in the
parametrization byλq andλp (a′ = λqq + λpp) these multimode double IS are given by
formula (47) withα = 0.

Another explicit example ofsp(N,R) RIS is given by multimode squeezed Fock states
U(g)|n〉, whereU(g) ∈ Mp(N,R). Indeed, Fock states|n〉 are eigenstates of Hermitian
Mp(N,R) generatorsK(3)

jj = a†j aj /2 (see equation (51)), thereforeU(g)|n〉 are eigenstates

of Hermitian operatorsU(g)K(3)
jj U(g)

† which are real linear combinations of allMp(N,R)
generators (follows from the BCH formula). From section 3 we know that this eigenvalue
property is sufficient for the equalities detσ = detC = 0, i.e. the squeezed Fock states are
sp(N,R) RIS for all Hermitian quadratures of operators (51). Multimode squeezed Fock
statesU(g)|n〉 were constructed in the last two papers of [11], where theMp(N,R) operator
U(g) was taken as the evolution operatorU(t) of the generalN -dimensional quadratic
quantum system (in coordinate representation the states〈q|U(g)|n〉 were expressed as the
product of〈q|0〉 (see equation (47)) and a Hermite polynomial ofN variables). Note that
squeezed Fock states aresp(N,R) RIS and nothN RIS and squeezed Glauber CS arehN
RIS and notsp(N,R) RIS. Only squeezed vacuum states are simultaneouslysp(N,R) RIS
andhN RIS (hN RIS =Q-RIS).

Recently, attention was paid, in the physical literature, to multimode even and odd CS
[36] |α〉± = N±(|α〉±|−α〉), where|α〉 = D(α)|0〉 is Glauber multimode CS. We readily
see that these|α〉± are eigenstates of allKjk, equation (51), and therefore are noncorrelated
squared amplitude RIS with equal uncertainties of quadratures ofKjk. It is the set of all
sp(N,R) Kjk-RIS which is a natural extension of that of multimode even and odd CS
|α〉±, incorporating also the multimode squeezed vacuum states|0, u, v〉 and Glauber CS
|α〉. Unlike the even and odd CS|α〉±, theKjk-RIS (being eigenstates of combinations
ujkajak + vjka†j a†k) can exhibit strong squeezing in quadratures ofajak and therefore can be
calledmultimode squared amplitude squeezed statesin complete analogy to the well known
case of multimode (amplitude) squeezed states [19, 33, 34].

We stress that the set of allsp(N,R) RIS, and even the set of theKjk-RIS is much larger
than the set ofMp(N,R) CSU(g)|0〉. The problem can be solved entirely in the one mode
case,N = 1, using the Glauber CS representation, in whicha = d/dα, a† = α [30, 31].
The resulting even states take the form (37) with the replacementsk = 1

4 andη = α2/2, the
normalizability conditions remaining the same as (39). Some particular sets of one-mode
squared amplitude squeezed states are constructed and discussed in [17]. Generalized one-
mode even and odd CS|z, u, v;±〉 were first constructed in the second paper of [19] as
even and odd solutions of the eigenvalue equation(ua2 + va†2)|z, u, v;±〉 = z|z, u, v;±〉
with complex parametersu andv. The eigenvalue problem for operators(a+ ζa†)2 (ζ ∈ C
was considered in [37].

The RIS, which are not group-related CS, exhibit many physical properties which group
CS lack. One such property is squeezing in the fluctuation of group generators. Squeezing
in the fluctuation ofXµ in a state|ψ〉 occurs if |ψ〉 is close (by norm form example) to an
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eigenstate ofXµ since the (squared) variance12Xµ = σµµ of Xµ vanishes in eigenstates
of Xµ only [15]. Therefore if in RIS which is eigenstate ofβνXν all but βµ tend to 0 then
1Xµ should tend to 0. In group CS with symmetry it is not always possible to let all but
βµ to tend to 0 due to constrain (31) (it is trivially possible ifXµ itself has|ψ0〉 as its
eigenstate). In the case ofsu(1, 1) we have explicit solutions|z, u, v,w; k〉, equation (37)
and CS|τ ; k〉 and one can verify the above statement: the variances ofK1,2 in CS are
greater thank for any τ [15], while for example fork = 1

4 theK1–K2 IS |z, u, v; 1
4〉 with

z = −1, u = √1+ x2, v = −x < 0 exhibit strong squeezing inK2 (1K2 is monotonically
decreasing whenx increases). Moreover, one can find IS which exhibitK1 (K2) and
q (p) squeezing (joint amplitude and squared amplitude squeezing) simultaneously. Sub-
Poissonian statistics also occurs in IS|z, u, v,w; 1

4〉. In greater detail, nonclassical properties
of SU(1, 1) IS (for k = 1

4,
3
4) are discussed (and illustrated by several graphics) in [31].

By means of four boson operatorsa, b, a†, b† one can construct quadratic combinations
which closesu(1, 1) (the representations with Bargman indexk = (1+ |na − nb|)/2 =
1/2, 1, . . ., considered in the previous subsection) orsu(2) algebra (the Schwinger
realization), which are subalgebras ofsp(4, R), equation (51) forN = 2. Currently
physical properties of varioussu(1, 1) and su(2) SIS of two-mode boson/photon system
are being discussed (see [38–40] and references therein). We note that the result of [40]:
K2–K3 two-mode IS which are notSU(1, 1), group CS can improve the sensitivity in the
interferometric measurements. Several schemes of generation of SIS forsu(1, 1) or su(2)
operators in two-mode quadratic boson representations were considered recently [38–40].
But so far no scheme for generatingK1–K2 one-mode SIS has been presented. It seems
natural to generate these SIS from experimentally available Glauber CS or even and odd CS
[8] acting on the latter by the squared amplitude squeeze operatorS(u, v), equation (27).
For this purpose, however, one has to look for a nonunitary evolution process, since here
the squeeze operatorS(u, v) is only isometric [31].

6. Concluding remarks

We have shown that the uncertainty matrix forn observablesXµ can always be diagonalized
by a linear transformation ofXµ. For the case of spin-component operators this means
that spin covariances are of a pure coordinate origin and correlated spin states are unitary
equivalent to noncorrelated states. When the uncertainty matrix is positive definite (as is
the case for example of theq-deformed multimode boson system withq > 0, in particular,
the case of canonical boson system,q = 1) it can be diagonalized by means of symplectic
transformations. Using the above diagonalization property a new family of uncertainty
relations for positive definite uncertainty matrices is established.

The Robertsonn-dimensional relation for the uncertainty matrix, equation (1), is shown
to be efficient at generalizing the basic properties of Glauber coherent states (CS) to an
arbitrary system of observablesXµ. For an even numbern of observables this relation is
minimized in a state|ψ〉 if |ψ〉 is an eigenstate ofn/2 independent complex combinations
of Xµ. For any (even or odd)n the minimization occurs in states which are eigenvectors of
a real combination ofXµ. WhenXµ close a semisimple Lie algebra, the set of states which
minimize the Robertson inequality (called here Robertson intelligent states (RIS)), contain
the corresponding group-related CS with symmetry. CS with maximal symmetry are also
contained in RIS for the quadratures of Weyl lowering and raising operators. Thus, it is
the Robertson uncertainty relation that brings together the three ways of generalization of
Glauber CS [3] to the level ofn observables.
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RIS which are not group-related CS can exhibit interesting physical properties. One such
universal property to be distinguished from CS is the strong squeezing of group generators.
In this way the multimode squared amplitude squeezed states are naturally introduced as
sp(N,R) RIS. Squared amplitude RIS can exhibit both linear and quadratic squeezing as we
have shown in the example ofK1–K2 IS. Such joint squeezing of noncommuting observables
could be useful in optical communications and interferometric measurements since the field
in such squeezed states is better determined—this should be considered elsewhere. The
problem of generating RIS for twosu(1, 1) and su(2) observables was discussed in [38–
40]. In this connection we note the principle possibility to generate for exampleK1–K2

squared amplitude IS by means of isometric (nonunitary) evolution operators.
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